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Constructive proof is given of the single-valued solvability of the problem of flow 

of a heavy fluid with free surface in a channel with a curvilinear floor at fairly high 
Froude numbers and certain restrictions imposed on the floor shape. Nonconstruc- 

tive proofs of the. existence of solution with other restrictions on the floor shape 
were previously obtained in [l- 31. The proof of solvability in the case when 
the Froude number is reasonably close to but greater than unity appears in [4]. 

1. The stabilized flow of a perfect incompressible ponderable fluid bounded from 
above by free surface L and by a curvilinear floor S with horizontal asymptotes is 
considered in the plane z = t i- iy (Fig. 1). The coordinate origin is located on s 

AY 
with the y-axis directed vertically upward. At infinity 
upstream (to the left) the fluid flow is uniform and is de- 
fined by velocity V,, and depth H of the stream. 

Let 1 be the curvilinear abscissa of a point on 8 mea- 
sured from the coordinate origin in the direction of flow, 
and $ be the angle between the tangent to $ in the di- 

rection of flow and the z-axis. We specify the shape of 
curve s by the equation 

E p=~(t), t=Z/H (---<<<4 

Fig. 1 
We assume function F (t) to be twice differentiable 

and to satisfy for - 00 < r < 00 the conditions 

1 F (t) [ < B,e-bOlf’, 1 F’ (t) I\< Ble-“” t ’ 

I F (t) I < B I 1 ,‘I 

(1.2) 

I F’ (4 I < B,, ” \ 3 ’ 

where Bo, B1, Bz, B,, b, and biare some positive constants. 
LetthebandK ={O<q<n,‘2}: conformally represent the flow region in the 

plane of the auxiliary variable 5 = E -/- iq , with the straight lines q = rr / 2 and 
q = 0 corresponding, respectively, to the free surface and to the solid boundary, and 
point 5 = U to the coordinate origin of plane z . The complex flow potential w is 
defined by formula 

w = 2V,,Hn-15 (1.31 



We introduce in the analysis the joukowski function 

(1.4) 

where v is the modulus of velocity and 8 is the angle of inclination of velocity to the 
z-axis. For defining the boundary values of function f (5) we use the notation 

To = Re f (8, 0, = Im f (8, 8,’ = de, I dE 

rl = Re f(E + in / 2), 8, = Im f (E + in /a), F’~ = dr, / dg 

We express the condition of constant pressure at the free surface in the form 

Fl'e-3n - ' " sin8 --7 
V”d a; 1 (1.5) 

where g is the acceleration of gravity and ‘p is the velocity potential. In accordance 
with (1.3) and (1.4) we have 

dv 2VOH at 
dE= n 

on S and L, - = on S 
dF 

Taking into account (1.1) and (1.5), we obtain for function f (5) the following nonlinear 

boundary value problem : e 
8,’ = -$ F’ (t) era, t=$ 

s 
efo dt (1.6) 

0 

e 

1.1' = &sin e1 1 - 3a 
( s 

sin e1 dt +, 
1 

& = LE!& 
-00 

limf(C) = 0, 4-+-m 

Function f (c), which is regular in K and continuous in the closed region K, is defined 

in terms of 8, and Fl by formula [5] 

f (5) = $ 3 (eo (T) CSCh (Z - 5) + F1 (Z) sch (.t - 5)) dT (1.7) 

-co 

(csch z = 1 I sh z, sch z = 1 I ch z) 

Assuming the boundedness and differentiability of functions 8, and rl, from (1.7) by 

integrating by parts we obtain 
m 

PO =+ \ {&,‘(t)lncthk$. + 7’1 (t) sch (T - E)} dz (1.8) 

--a 

e1 = f \ (e,(r) sch (z - E) + F{ (z) lncth w 
I 

dr 

Let x (E) and A (5) -bm e real functions determinate along the whole numerical axis. 

We introduce operators PO, PI, Do, D,, So, S1 and K. 



cm the flow of a heavy fluid in a channel 

Pox= 5 ctsinx(t)(i-33h S sin x (E) dE)-ldz 
-co -00 

P1x = in sin x (Q ( 1 - 3h 1 1 

-1 
sin x(z) dz 

--m 
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(1.9) 

D,x=+ i x(z)sch(‘t-E)dr 
-Jo 
co 

&X = f 1 X(Z) lncth w & 
-Jo 

E 

&x = F (t), &x = + ,x(E) F’ (t), t = $ \ ex(T) dz 
0 

m 

K. (x, h) = f 1 {x (z) csch (IT - 5) + h(z) sch (z - c)} dt 
--m 

In accordance with (1.6) 

r1’ = PA, rl = Pot&, 8,’ = Sir,, 0, = S,r, 

It follows from (1.8) that functions r. and 8, satisfy the operator equations 

r. = DISlro + DoPoe,, 0, = DoSoro + DIPlel (1.10) 

Hence, if function f (5) is the solution of the boundary value problem (1.6), the equali - 
ties (1.10) are satisfied. 

The converse statement is also valid. If the continuous and bounded real functions 

ILo* (E) and Pi* (E) are such that the limit 

lim isinpl*dE=M, IMl<oo (1.11) 
a----m 

exists and the relationships 0 

PO* = ~&PO* + D,p,~i*, PI* = D,s,~s~* + D,P,~i* (1.12) 

are satisfied, then function 

h (5) = KfJ (~,Pcl*7 &Pi*) (1.13) 

yields the solution of the boundary value problem (1.6). In fact, function h (5) defined 
by formulas (1.13) and (1.9) is regular in K and continuous in the closed region g. 

By comparing formulas (1.7) and (1.9) with allowance for (1.8), we can conclude that 

Im h (E) = Ss~a*, Re h (E + in I 2) = P,-,pI* 

g Im h(E) = SILO*, -$- Re h (E + T) = P+I* 

Re h (E) = W1po* + D,PocL~* 
Im h (E + in / 2) = DJop,,* -I- D,P,pl* 

and in accordance with (1.12) 

(1. 14) 
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Re h (U = po*, Im k (E + in f 2) = pz* 
Setting f ( 5) = h (5) . we conclude that conditions (1.6) are satisfied. 

2, We assume that the real function x (E) specified along the whole of the numeri- 
cal axis belongs to space Ls ,if it is continuous and if for a fixed 6 > 0 there exists 
such N > 0 that 

lG$I<~e-sJ~’ (<cQ<E<=) (2.1) 

We call the lowest value of 1L which satisfies inequality (2.1) the norm of function 
x (E) in space L, and denote it by ~/X//S. Space La is a Banach space. 

Let C be the space of real continuous and bounded functions. Introducing the Banach 
space 

and operator A defined in 3 by the equalities 

Av = Aov X Ap (2.2) 
Aov = WIPE + 4,Popu A~v = &&,~o + WIPI 

we write the system of Eqs. (1.12) in the form of the operator equation 

v =Av (2.3) 
Let us Investigate the properties of the introduced operators. 

Lemma 1. For 0 ( 6 ( 1 operators U, and D, transform space Lb into itself, 
and 

il Do /J8 < 4 bc (1 - @)I-‘, 11 D, I/b < ST, r2 (1 - &ql-’ 

If x(E)>&and 6<1,then 

6 

e-sIQ--siln cth+ dz+ 
-R’ 

I I 
(2.4) 

We substitute in formula (2.4) the series 

Infeth-&] = 2%(2n + 1)-1e-(273+Ol71 
7%=0 

for In 1 cth 1/z T 1 . Changing in the last formula, first, the order of summation and 
integration and then, that of summation and passing to limit, we obtain 

I Dlx, \< 4 II; Ils 2 (an + 1) e--s ’ 4 I- 6P-(zn+l) ’ F ’ 
(2n + 1)[(2n + 11% - 621 

\< 

n==o 

4ll”Ils “IpcIp-~‘~’ 
-6 

_s,e, m 
?[- c [ (2n + 1)s - q-1 < 

2 (1 - 8%) 
n=o 

Q. E. D. The validity of Lemma 1 for operator Do is proved with the use of the inequal- 

ity schz > 2e-IT . 



Lemma 2. Operators L), and L), transform space C 

II&Ilc=~7 (p,jc=d2 

The proof of this statement is elementary. 

We introduce the sets C (R), Lg (T) and B (R, ?‘) 

585 

into itself, and 

Let v = (pO, pI) EZ B (R, 7’) when 0 < 6 < 1. Using Lemmas 1 and 2,conditions 
(1, Z), and the inequalities 

we can show that Av E B (R, T) only if the relationships 

6aTP < 1, 2rc-‘b,e-R > 6 (2.5) 

B2eR + 2aTK’ (1 - 6c~T6-~) < R 

are satisfied. 

Let v’ = fpg’, ~1’) E I.3 (R, T), V" = (pen, pl") cz B (R, T) and thefirst 
of inequalities (2.5) be satisfied. Then 

I &PLoS - SopoN I< BleaR exp ( - -$ ble-R 1 E I) iI lb’ - PO@ llc 

II &PI?’ - &PO” I]< $ eR (& + B3e2Rj U po’ - PC 11~ 

Under condition 
2n-‘b,e-R b 6 

we obtain 

II Av’ - Av ” /JB = \\ A C’ - -4~” IIc + Ii A1v' - A,v ’ [Is < 
Y rrr ih’ - km lb + II Fl' - p1" 16) 

r<max I@&[~(1 
1 

- a')]-' + B2 + B,] e3R 

[ 2 (1 z CiL) 
a (I+ 12aT&1) 

+ $1 (1- 6dm-y 1 

(2.6) 

(2.7) 

Thus operator A transforms the set B (R, I’) into itself and is on that set a contraction 
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operator if the inequalities (2.5), (2.7) and 

(2.8) 

{4B, [n (1 - P)l-’ + B, + B,}SR < 1 

are satisfied. 

3, Let us write the first and third of inequalities (2.5) in the form 

w < 1, B1 + y10 (1 - 0)-l< @ 

(2.9) 

(3. I) 
(,, = 65T(3-1, B, = 24B~r8-1 ml 

3-l (i - 82) ’ 71 = 2 (1 - 82) 

The analysis of inequalities (3.1) shows that they are satisfied when conditions 

p1 + Yl < l/2, (0 = wo = v2 (y1 + 38,) 

are fulfilled. These conditions are equivalent to the following: 

a < P = ‘/z {24B06-1 [n (1 - ~3~)l-l + x [2 (I - @)I-I}-’ 
T = To = 6B, [n (1 - a2)]-l + n6 [24 (1 - S-2)1-1 

Setting T = To we write (2.8) as 

(O. (1 + 20,) (1 - oJ2 N< Xl, wg = 6aT&’ 

Xl = 6T,P {x 12 (1 - 62)1_1 + 269)~’ 

(3.2) 

Taking into account the requirement for o. < 1 , from (3.2) we obtain 
-- 

a\< Q = 

{ 
",\:gfT;~;- I' 1(+~2;;WoW1- 4)1-l hJ2) 

Xl 

If the second and fourth of inequalities (2.5) and the inequalities (2.7) and (2. 9) are 
to be satisfied, it is necessary to impose certain restrictions on the constants that define 
function F (t). We assume that 

Bz < (e - 1) e-’ 

min 
1 
3 (1 - eB,) In 

II 
4Bl 

n(1 - 62) 

- (1 - eB,) In (26, / Sn) - B, (k 

Setting T = To we write (2.5) in the form 

(3.3) 

+ & + &I-’ - B2 (3.4) 

== O,l)} = co > 0 

B,eR + D < R, D = 2a T,6-* (1 - 6aT&*)-I (3.5) 

Taking into consideration (3.3) it is possible to show that the inequality is satisfied when 

D< e-l, R -= p (a) = (II, + D) (1 - eB,)-’ (3.6) 

In accordance with (3.4) the second of inequalities (2.5) and the inequalities (2.7) and 
(2.9) are satisfied for R = p (a) if 

D,< co (3.7) 

Conditions (3.6) and (3.7) are equivalent to the following: 
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a < U = 6C, IZT, (1 + 3C,)l-I, C1 = min (Co, e-l) 

Thus. when constants B,, Bs, Bs, b, and b, satisfy relationships (3.3) and (3.4), then 

with T = T,, R = p (a) and a < a,, = min (k’, 9, u) *he inequalities (2.5) and 

(2.7) - (2.9) are fulfilled. 
The following theorem is formulated with the use of the principle of compressed map- 

ping. 
Theorem 1. If conditions(1.2),(3.3),(3.4) and 0 ( 15 < 1, then for a = 

~1 < a0 there exists in space B’ = B (p (a,), To) the solution Y* = (PO*, PI*) 
of Eq. (2.3) which is unique in the space B” = B (p (a,), T,) (B’ C B”). That so- 
lution can be found as the limit of sequence 

y(n)=Ay@--l) (n=1,2,*..) (3.3) 

for any initial approximation v(O) E B’. The estimate of the n-th approximationerror 
is given by formula 

)I v* - v(n) 11 B \ * IJ Y(O) - AdO) JIB < (3.9) 

y1 = max {[4B, (n (1 - P))-l + Bz + BJeSQ@1) 

4. Let v* = (po*, pl*) be the solution of Eq. (2.3) and v* E B. Then, as shown 
above, function f (5) which yields the solution of the boundary value problem (1.6) is 
defined by formula 

with 

Let v@@B’, 

ro = po*, 01 = p1*, e. = Sopo*, rl = P,pl* (4.1) 

~(~-1) = (~o(n-l) and pl(“-l)) , (n = 1,2, . . . ). We introduce the notation 

f(n) (5) = Ka (SOQn--l), Po~l(n--l)) (n = 1,2, . . . ) (4.2) 

hocn) = Im f@) (E), h,(n) = Re f(n) (E + in / 2) 

Function f(n) (5) is regular in K and continuous in x. In accordance with (1.13) and 
(1.14) 

ho(n) = So~o(“-r), Al(n) = po/QN (4.3) 

Re f@‘) (E) = DIS1po@-~) + Dopopl(n-l) 

Im f(n) (E + in / 2) = DoSopo(n-l) + D1pIPl(n-u 

Taking into consideration (2.2) and (3.8) we obtain 

Re f’“’ (E) = p&n), Im f@) (E + h/2) = pItn) 

Allowing for (4.1) and (4.3) we have 

max I f (5) - f(n) (5) I 6 max { [r. - po@)IIc + llOo - ho@)Uc, llr~ -- 

- W)Jjc + j/h- PPJ/c)< max{jJP0* - PPJlc + 

+II&Yo * - So~&q* 

upo!-h*- poPP-')IIC + II Pl* - Pl'"'Ild 

When the conditions of Theorem 1 are satisfied with allowance for the inequalities(2.6) 
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and (3.9), we obtain 

(4.4) 

We denote by n/p (R, T) the class of functions f (t) that am regular in K and conti- 
nuous in r, and such that 

Using the obtained results it is possible to formulate the following basic theorem. 
Theorem 2. When conditions (1.2),(3.3), (3.4) and 0 < 6 < 1 are satisfied, 

then for 01 = ccl < czo there exists in the class M (p (a,), T,) a solution of the boun- 
dary value problem (1.6) which in class M (p (a,), To) is unique. That solution can 
be obtained as the limit of sequence (4.2) for any Y(O) E B’. The estimate of the n-th 
approximation error is given by formula (4.4). 

If the foukowski function f ( IZJ is known, function z (5) which maps band II on the 
region of flow is determined by formula f 

(4.5) . 

By analyzing successive approximations it is possible to prove by mathematical induc- 
tion the following two theorems. 

Theorem 3. When conditions(1.2),(3.3),(3.4), 0 < 6 < 1, cz = (x1 < a, 
and F (t) = - F (- t), then function f ([) which belongs to class M (p (a,), To) 
and yields the solution of the boundary value problem (1.6) us such that 

f(--D=fo, <El? 

In other words, when the channel floor is symmetric about the g-axis, the fluid flow 
that corresponds to the obtained solution is also symmetric about that axis, 

Theorem 4.When conditions(1.2),(3.3),(3.4). 0<6<1, a=~$< a,, T, <n 
and F (t) < 0 (F (r) > (0, then function f (I;) which belongs to class M (p (a,), 
T,), and provides the solution of the boundary value problem (1.6) is such that r,’ and 
8, < 0 (rx’ and 8, > 0). 

In other words, when the channel floor drops (rises) inthe flow direction, the free sur- 
face behaves similarly, The stream depth at infinity to the right (of the y-axis) is smal- 
ler (greater) than that of the stream depth H at infinity to the left (of that axis). 

Conditions (1.2), (3.3) and (3.4) appearing in Theorems 1- 4 differ as to the restric- 
tions imposed on the floor shape from those used by the authors of papers [l- 33. The 

flow in a channel with a monoto~~ally dropping floor (P (t) < 01 was investigated in 
[l], while papers [Z, 31 dealt with the flow past an obstruction on a horizontal floor 
(F (t) = 0 with 1 t I > to > 0). The three authors stipulated moreover the fulfillment 
of the inequality 1 F (1) 1 < JC / 2. Conditions (1.2), (3.3) and (3.4) do not contain any 
of these restrictions. 

Let us prove that 1 I;’ (t) 1 can exceed rr / 2. Let, for example, 

It can be readily ascertained that conditions (1.2) are satisfied when b, = b, = a, 

B. = & / a, B, = 2c, Bz = c / 2 and B, = c (1 + a). The lower estimate of 
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2 3 

1 1 s 

4 
C 

22 
e-.Q+_' 

s 
e-ardz ++- 

s 
e-a'dr+... = 

I 
I 

2 3 

-&ct~-~(e~ - f)[ - In (1 - e-a) _ e-a] 

The positive constants C, a and 6 can be, evidently, chosen so that with conditions 

(3.3) and (3.4) satisfied max 1 F (t) 1 exceeds any a pr io I: i specified number. Note 
that a, -+ 0 when a and 6 +O, i.e. when max 1 F (t) 1 + co. 

5, For computation purposes it is convenient to pass in Eqs. (1.10) from variables E 
and ‘c to CT and u defined by 

The functions and operators obtained by such substitution will be denoted by a dot super- 
script. We have 

x (E (0)) = St’ ((r), x (z (u)) = %’ (u) 

PI% = PiX” = In sin X’ (0) (I + 3a i siiiz,ill’ du)-l 

x 

L&x. =f &‘x’ = +m \ X’ (u) du 
1 - cos u cos 6 

0 

Equations (1. 10) now assume the form 

r’, = D1’Sl’r,’ + Do’P,‘O,‘, 0,’ = Do’So’ro’ + D<Pi01 (5.1) 

Let function x’ (a) specified in the interval [0, nl be representable in the form of 
a Fourier series in cosines 

x’ (5) = 2 B, cos ks (5.3 

Taking into account that k=Q 
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and using formulas 3.612 and 3.613 from [6], we obtain 

03 
L)o’x’ = 

k=0 

(5.3) 

co m-1 

D,x’ = 2 C-I sin (2m - 1) Q 
Zm-1 c 

B%k + 

lTL=1 K-0 

‘$$’ 2 B,,_,} 

k=l 

The solution of Eq. (2.3) by the scheme (3.8) is equivalent to the determination of 

functions rO’(o) and 8,’ (a) by using Eqs. (5.1) and the scheme 

r--O’in+i) = &*&‘r,‘c”), -j- ~~~~e~(n), &W+l) = ~*.S~‘r~(*) + ~~.~~@~.tn) (5.4) 

If the conditions of Theorem 1 are satisfied and r,‘(O) s O,‘(o) z 0, then for any n 
functions ro’(n) and O,‘(n’ are continuous, and 

rO+) (rc) = 0, 1 f3T(n) (a) ] < iI4 (sin 5)s 

where M is some constant. Assuming that functions r’,@f and fj,‘f*i have been deter- 

mined, we expand ,So*r’$~, 5’l’r’(;J, PO’ 8,*~“) and p1’8x*(n) into Fourier series in co- 
sines 00 Q, 

&‘roW = 
c 

ok@) COS ka, L~l’ro’(n) = 
c 

bk@) COS ka 

k-0 if=0 

m 03 

p,'(j,'i?~) _ - 
c 

c k ('*) cos ks , yl*(&w zzz 
c 

dk@ COS k6 

h‘ s-0 t-0 

In accordance with (5.2) - (5.4) functions rOgt”*‘) and Cl,Yn+i) are defined by for- 

mulas 

{~~~} = ~~~~~ ( ‘;oZZ” )” + 

k‘--0 

Taking into consideration the asymptotic properties of the mapping function z (I;) 

when g -+ - oo, the shape of the channel floor (x, (o), go (o)) and the free surface 
(~1 (u), ~1 (o)) can be determined in accordance with (4.5) by formulas 

0 

(5.51 
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0 

111 2 -= 
H s err’(u) sin 0i’ (u) du 

sr sin u 
A--L 
x--t 

xc 2 -= -- 
H Jl s 

era’(U) ‘qJsi~Ja) du, 8,’ = Sooreo 

iI /z 

where e is a reasonably small positive quantity. 

The 

The 

described method was used for computing the flow in a channel for 

F (t) = 0.3 (ch ‘/Z 74-2 

flow bo~d~ies are shown in Fig. 2 for a = 0 (im~nderable fluid) and a = 0.2. 
The shape of the channel floor computed by formulas (5.5) for these values were virtu- 
ally the same as the shape determined by formulas 

+ t 
x0 

H = C0s F (t)dt, s -$- = sinE (t)dt s 
0 0 

which indicates a fairly high accuracy of obtained here results. 
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